Xylitol Dehydrogenase

April 7, 2005

Summary

Xylitol dehydrogenase catalyzes the oxidation of xylitol to xylulose using NAD⁺ as a co-substrate. This protocol describes a direct enzyme assay for determining xylitol dehydrogenase activity. This assay is only suitable for those cases in which a competing enyzme reaction, the oxidation of xylitol to xylose, uses NADP⁺ as a co-substrate.

Solutions Required

- 1. 500 mM tris-HCl buffer pH = 8.6. adjust pH to 8.6 with 20% KOH.
- 2. 10 mM potassium phosphate buffer pH = 7.0 prepared by mixing 8 mL of 10 mM KH₂PO₄ and 20 mL of 10 mM K₂HPO₄ or prepared by dissolving 0.0194 g KH₂PO₄ and 0.0815 g K₂HPO₄·3H₂O in 50 mL water.
- 3. 100 mM 2-mercaptoethanol can be prepared in stock solution and stored in refrigerator.
- 4. 4.0 mM NAD⁺ must be prepared fresh
- 5. 1.5 M xylitol can be prepared in stock solution and stored in refrigerator.

Preparation of Cell Extract

Follow general protocol **Preparation of Cell Extract**.

- 1. After first pelletization of cells, resuspend at 4°C in potassium phosphate buffer.
- 2. After second pelletization of cells, resuspend at 4°C in potassium phosphate buffer.

Spectrophotometer

Turn on the ultraviolet bulb on the spectrophotometer (Beckman DU50) and wait 10 minutes for warm-up. Select the kinetics-time window on the instrument. Load the method "A:/nadh30" or "A:/nadh37". These methods each have a run-time of 60 s, a temperature of 30°C or 37°C (respectively), a wavelength of 340 nm and use 2 autosamplers.

Procedure

1. For each assay, prepare the two cocktails shown in the following table into two separate UV-translucent cuvettes, and keep them on ice.

	Volume (µL) added to:	
Solution	Control	Experimental
DI H ₂ O	300	200
500 mM tris-HCl	400	400
2-mercaptoethanol	100	100
$\mathrm{NAD}^{^{+}}$	100	100
xylitol	0	100

- 2. Directly from the ice when ready to commence the assay, place the two quartz cuvettes (each containing 950 µL) into the spectrophotometer holder (position #1 for control, position #2 for experimental). Use cuvette lid caps to mix 3 or 4 times then insert in instrument.
- 3. Wait 10 minutes to allow the temperature of the solutions in the cuvettes to equilibrate.
- 4. "Blank" and then depress "Read Samples" on the monitor.
- 5. Simultaneously add $100 \,\mu\text{L}^{\dagger}$ of the cell extract to the cuvettes.
- 6. To mix solutions, immediately and simultaneously aspirate and dispense the contents of the cuvettes with a pipettor. Mix the solutions in this way ten times. (Count!)
- 7. Promptly depress "start" on the monitor.
- 8. Record the rates for the two (control and experimental) cuvettes.

† Dilution of the cell extract may be adjusted so that change in absorbance is between about 0.05 and 0.7 AU in one minute. This dilution should be accomplished externally in a microcentrifuge tube (for example, by adding 50 μ L of cell extract to 950 μ L DI water to achieve a dilution of 20). The volume of 100 μ L should always be used in the enzyme assay mixture.

Calculation of Activity

One unit (U) of xylitol dehydrogenase activity is defined as the amount of enzyme required to oxidize 1.0 µmole of xylitol in one minute.

1.
$$dA/dt (min^{-1}) = [Rate]_{experimental} - [Rate]_{control} = dA/dt$$

2. Activity =
$$\frac{1000 \times TV \times D \times dA/dt}{\varepsilon \times V \times CF}$$

Activity: Volumetric Activity (U/L)

TV: Total volume in cuvette (1000 µL)

D: Dilution of the cell extract. (For example, if 50 µL of cell extract were add to 950 µL

DI water prior to using a volume of cell extract in the assay, then D=20)

V: Volume of cell extract used (50 µL)

E: Molar extinction coefficient for NADH (6.22 L/mmol for a path length of 1.0 cm)

CF: Concentration Factor of cell extract (For example, if a 100 mL sample is

concentrated to a 2 mL volume for the French Press, then CF=50)

3. Specific Activity =
$$\frac{Activity}{Protein Concentration}$$
 1

Activity: Volumetric Activity, as calculated in #2 above (U/L)

Protein Concentration: Protein concentration, as calculated in protocol Total Protein

Concentration (mg/L)

Specific Activity: (U/mg protein)

<u>Reference</u>

T. Ikeuchi, R. Kiritani, M. Azuma, H. Ooshima (2000) Effect of D-glucose on induction of xylose reductase and xylitol dehydrogenase in *Candida tropicalis* in the presenceof NaCl J. Basic Microbiol. 40(3), 167-175.