Moments of Crystal Distribution

Moment	Meaning	Definition	Total for Continuous Crystallizer	Fraction for Continuous Crystallizer
0	Number of Crystals	$\int_0^L n dL$	$rac{n_{\circ}GV}{Q}$	1 - e ^{-χ}
1	Size of Crystals	$\int_0^L nLdL$	$n_{\circ} \left(rac{GV}{Q} ight)^2$	$1 - (1 + \chi)e^{-\chi}$
2	Area of Crystals	$\int_0^L nL^2 dL$	$12\phi_{A}n_{\circ}\left(\frac{GV}{Q}\right)^{3}$	$1 - (1 + \chi + \frac{1}{2}\chi^2)e^{-\chi}$
3	Mass of Crystals	$\int_0^L nL^3 dL$	$6\phi_{V} \rho n_{\circ} \left(\frac{GV}{Q}\right)^{4}$	$1 - (1 + \chi + \frac{1}{2}\chi^2 + \frac{1}{6}\chi^3)e^{-\chi}$

 ϕ_V and ϕ_A are geometric volume and area factors which are characteristic of the crystal shape

G = crystal growth rate

Q = flowrate in continuous process

V = volume of crystallizer (continuous process)

 n_0 = initial population density

 $\chi = LQ/GV = dimensionless size$